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Sentiment Analysis

No model updates i.e., in-context learning
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Few-shot Learning with LMs

What topic is the following text about?
The Toyota Camry is the top selling car.
Answer:
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● Academically interesting

● Practically relevant with GPT-3:
○ effective with ~0-16 examples 
○ serve one model for many tasks
○ no ML expertise needed

Our paper’s goal: analyze and improve in-context learning 

Why In-Context Learning?
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Prompt Format

Sentence: Subpar acting. Label: bad

Sentence: Beautiful film.  Label: good 

Sentence: Amazing.           Label:

Q: What’s the sentiment of “Subpar acting”? 
A: negative 

Q: What’s the sentiment of “Beautiful film”?  
A: positive 

Q: What’s the sentiment of “Amazing”?           
A: 
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● Prompt format
● Training example selection
● Training example permutation

Review: the whole thing’s fairly lame, making 
it par for the course for disney sequels.
Answer: Negative

Review: this quiet, introspective and 
entertaining independent is worth seeking. 
Answer: Positive

Review: this quiet, introspective and 
entertaining independent is worth seeking. 
Answer: Positive

Review: the whole thing’s fairly lame, making 
it par for the course for disney sequels .
Answer: Negative

51.3% Acc.88.5% Acc.

Prompt 1 Prompt 2
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Does The Prompt Affect Accuracy?

● Prompt format   - Yes
● Training example selection   - Yes
● Training example permutation   - Yes
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We identify three biases in LMs

● Majority label bias: frequent training answers dominate predictions 
○ helps explain variance across example selections

● Recency bias: examples near end of prompt dominate predictions
○ helps explain variance across example permutations

● Common token bias: common n-grams dominate predictions
○ helps explain variance across prompt formats
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Frequent training answers dominate predictions 
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Examples near end of prompt dominate predictions
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Common Token Bias

Language Model 0.35

Token

book

Prob

0.23transportation

0.11school

0.03village

0.02company

What topic is the following text about?
The Model T was released by Ford in 1908.
Answer:

Prompt

Common n-grams dominate predictions

Token                Web (%)        Label (%)   Prediction (%) 
book                   0.026               9                  29
transportation   0.0000006      9                   4   
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Negative Examples

What Is The Impact of These Biases?

Biases cause a shift in output distribution

Positive Examples
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Contextual Calibration

Step 1: Estimate the bias Step 2: Counter the bias

Input: Subpar acting. Sentiment: negative 
Input: Beautiful film.  Sentiment: positive 
Input: N/A            Sentiment: 

Insert “content-free” test input into prompt

0.65positive

0.35negative

Get model’s prediction

“Calibrate” predictions with affine transformation

Original probsCalibrated probs

0

0

Fit      and    to cause uniform prediction for “N/A”

1
0.35

1
0.65

0

0



Effect of Contextual Calibration

● Experiment with 11 different datasets
○ Classification
○ Knowledge base completion
○ Information extraction

● Consider 0, 1, 4, 8, and 16 training examples

● Different sizes of GPT-3 and GPT-2 language models
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● Improves mean and worst-case accuracy

● Reduces variance across training sets and permutations

● Reduces variance across prompt formats



   

         Paper and Code at ericswallace.com/calibrate
Code: https://github.com/Eric-Wallace/universal-triggers

  

Summary

1
2
3

GPT-3’s accuracy has high variance across different prompts

LMs have biases that hurt few-shot learning

Contextual calibration improves accuracy and reduces variance

http://ericswallace.com/calibrate
https://github.com/Eric-Wallace/universal-triggers

