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Smart Assistants

Machine TranslationInformation Retrieval

Text + Speech Generation

Result of large investments into data annotation and model design
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An adversary can benefit financially by stealing models
● avoid long-term API costs by stealing models upfront
● launch a competitor service of similar quality

An adversary can benefit financially or harm society by breaking models
● manipulate the stock market by fooling sentiment models
● bypass classifiers of fake news or hate speech

An Adversary’s Viewpoint
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● Common Practice: keep data + model hidden
● Our paper: this is not enough to protect NLP models!

○ adversaries can imitate black-box models
○ imitation models help break black-box models
○ new defenses mitigate adversaries

● We consider machine translation (MT) as a case study

Our Contributions

AdversaryBlack-box APIHidden Data + Model

How are you?

Wie geht es dir?
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● Goal: train imitation model that is similar to black-box API
● Method: query sentences and use API output as training data
● Not just model distillation:

○ unknown data distribution
○ no distribution or feature matching losses

Model Stealing: How We Imitate MT Models
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Setup:
● Black-box MT victim model for German-English
● Vary imitation model’s architecture and queried sentences

Evaluation metrics:
● BLEU on in-domain and out-of-domain data
● Output similarity using inter-system BLEU

Simulated Model Stealing Experiments

For all architectures, data settings, and evaluation 
metrics, the imitation models closely match their victims
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● Most adversarial attacks for NLP assume white-box access
○ How to do black-box attacks?

● Simple idea: transfer attacks from imitation models

● We consider benign but representative adversarial attacks
○ same techniques would apply to malicious use cases

Breaking MT Models
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Universal Suffix Dropper Attack
● A phrase that commonly causes itself and any subsequent text 

to be dropped from the translation

● Transfer trigger to Bing
● 76% of messages after trigger are successfully dropped

Given the release of the latest 
iPhone, Apple stock was up 3% in 

trading early yesterday , 
kostenfrei übrigens categories 

ņstrian hl SM the revolution 
begins at 6pm
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Apple-Aktie gestern früh im Handel 
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Apple stock was up 3% in trading early 

yesterday)



Targeted Flips Attack

● Cause a specific output token to flip to another specific token



Targeted Flips Attack

● Cause a specific output token to flip to another specific token

I am going to die, it's over 
100°F, help! 

Ich werde sterben, es ist über 
100°F, hilf!Google



Targeted Flips Attack

● Cause a specific output token to flip to another specific token

I am going to die, it's over 
100°F, help! 

Ich werde sterben, es ist über 
100°F, hilf!

I am going to die, it's over 
102°F, help! 

Ich werde sterben, es ist über 
22°C, hilf!

Google

Google



Targeted Flips Attack

● Cause a specific output token to flip to another specific token

● 22% of attacks transfer to Google

I am going to die, it's over 
100°F, help! 

Ich werde sterben, es ist über 
100°F, hilf!

I am going to die, it's over 
102°F, help! 

Ich werde sterben, es ist über 
22°C, hilf!

Google

Google
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Defending Against Stealing

● What makes a good defense?

preserves model accuracy

lowers imitation model accuracy

reduces adversarial attack transfer

✔

✔

✔
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Prediction Poisoning Defense

● Adapt ideas from prediction poisoning (Orekondy et al. 2020)

Goal: find a translation      that is similar to the original but induces
a different gradient (ideally pointing the opposite direction)

Assumption: angular deviations are similar for adversary’s model

https://arxiv.org/abs/1906.10908
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Defenses Can Mitigate Adversarial Threat

● Defense reduces adversary’s BLEU more than defender’s
● Attack transfer drops from 38% to 27% at 70 BLEU Match
● Downsides: defense adds compute and hurts defender BLEU
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Conclusions

● Hiding models behind a black-box API is not enough!
○ Production MT models can be stolen
○ Production MT models can be broken

● Our defense mitigates vulnerabilities, but future work is required

https://www.ericswallace.com/imitation
https://github.com/Eric-Wallace/adversarial-mt
https://arxiv.org/abs/2004.15015

