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State-of-the-art NLP models require millions of dollars to train

Devlin et al. (2019). We pretrain our model using

1024 V100 GPUs for approximately one day.

$4,600,000: The full cost of training GPT-3

Consumption CO2e (Ibs)
Air travel, 1 passenger, NY<«++SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000
Training one model (GPU)
NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468
Transformer (big) 192
w/ neural architecture search 626,155

Artificial intelligence / Machine learning

Training a single Al model
can emit as much carbon
as five cars in their
lifetimes
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e Computational constraints are increasingly the bottleneck



Maximizing Computational Efficiency

e The goal —» maximize computational efficiency

o highest possible accuracy given fixed hardware and training time



Maximizing Computational Efficiency

The goal —» maximize computational efficiency

o highest possible accuracy given fixed hardware and training time

Pretrain FLOPS vs. GLUE Score

90 - »
i . S iTS
oXLNet ALBERT
RoBERTa

.
BERT
L ]
BERT-Base

GLUE Score

L]
GPT2

75-
BERT-Small

.
70 - ELMo

le+19 le+21 le+23

Pretrain FLOPS



Maximizing Computational Efficiency

The goal —» maximize computational efficiency

o highest possible accuracy given fixed hardware and training time

Pretrain FLOPS vs. GLUE Score

90 - »
i . S iTS
oXLNet ALBERT
RoBERTa

.
BERT
L ]
BERT-Base

GLUE Score

L]
GPT2

75-
BERT-Small

.
70 - ELMo

le+19 le+21 le+23

Pretrain FLOPS



Rethinking Common Assumptions

e Conventional wisdom:
o Small models train faster



Rethinking Common Assumptions

e (Conventional wisdom:
o Small models train faster
o Large models are infeasible for inference



Rethinking Common Assumptions

e (Conventional wisdom:
o Small models train faster
o Large models are infeasible for inference
small models = fast < large models = slow



Rethinking Common Assumptions

e (Conventional wisdom:
o Small models train faster
o Large models are infeasible for inference
small models = fast < large models = slow

e Goal: study how model size affects training and inference
efficiency



Rethinking Common Assumptions

Conventional wisdom:
o Small models train faster
o Large models are infeasible for inference
small models = fast < large models = slow

Goal: study how model size affects training and inference
efficiency

Results:
o Large models train faster



Rethinking Common Assumptions

Conventional wisdom:
o Small models train faster
o Large models are infeasible for inference
small models = fast < large models = slow

Goal: study how model size affects training and inference
efficiency

Results:
o Large models train faster
o Large models are efficient at inference time



Rethinking Common Assumptions

Conventional wisdom:
o Small models train faster
o Large models are infeasible for inference
small models = fast < large models = slow

Goal: study how model size affects training and inference
efficiency

Results:
o Large models train faster
o Large models are efficient at inference time

Key idea: stop training early & compress heavily



Training Efficiency



Experimental Setup
e J[ransformer models

o Feedforward architecture, SoTA for NLP [ Contextua ]

P

Representation

Position-wise
Feed Forward

T

@

P e e S

Multi-Head
Self Attention

A p)
\_
Positional o
Encoding @ :|:
Embedding
T

Inputs

L U U U U U

xN



Experimental Setup
e J[ransformer models

o Feedforward architecture, SoTA for NLP [ Contextua ]

e \We vary hidden size + model depth
increase batch size to fill the GPU
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Experimental Setup
Transformer models

o Feedforward architecture, SoTA for NLP [ Contextua ]

We vary hidden size + model depth
increase batch size to fill the GPU

Task 1: MLM pretraining + finetuning
(RoBERTa)

Task 2: machine translation
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Validation MLM Perplexity

Deeper and Wider Models Converge in Fewer Steps
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Deeper and Wider Models Converge in Less Wall Clock Time

MLM Validation Perplexity
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Same Trends Hold for Machine Translation
Effect of MT Model Size
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Why Do Larger Models Train Faster?

e [arger models reduce training error faster



Why Do Larger Models Train Faster?
e [arger models reduce training error faster
e MLM training has “unlimited” data— overfitting not a concern

e [hus, larger models also minimize validation error faster
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Effect of RoOBERTa Model Size with 1% Data

25.
Model Size

= —256H, 12
= —768H, 3L
= —768H, 12L
o 20- —768H, 24L
(ol
=
= overfitting
[
S 15 N
(49
i
G
>

10-

0 100000 200000 300000
Wall Clock (Seconds)



Inference Efficiency



J Large models are fast at training time
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J Large models are fast at training time

x Large models are slow at inference time

Trade-off between large and small models? NO!

J We show that larger models are more compressible
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e [ix training time for models of different sizes

e [wo compression technigues: pruning & quantization

-> Set weightsto O "% K
& Reduces memory o r
€ Reduces FP operations - i
\/ I
Zero out

Finetune —> smallest —» Sparse model
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Experimental Setup

e [ix training time for models of different sizes

e [wo compression technigues: pruning & quantization

=> Store weights in low precision W ff
€ Reduces memory () e
o -_—

€ Accelerates speed on certain hardware
€ Post-hoc quantize with no additional training time

Image: Rasa



Deeper and Wider Models are More Robust to Pruning
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Deeper and Wider Models are More Robust to Quantization
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Why Do Larger Models Compress Better?

e Quantization/Pruning error is smaller for larger models

RoBERTa Quantization Error
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Why Do Larger Models Compress Better?

e Size, not convergence, determines compressibility
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e Increase model size not batch size
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Practical Takeaways
e |ncrease model width, sometimes depth

® Increase model size not batch size

e Apply compression methods like pruning/quantization

o little to no training overhead
o compress model up to 8x without hurting performance



Conclusion

Common Train Small | Stop Training ! Lightly

Practice Model When Converged Compress
; Train Large | Stop Training ] Heavily

Elptima; Model Early Compress

Blog and Paper available /


https://bair.berkeley.edu/blog/2020/03/05/compress/
https://arxiv.org/abs/2002.11794

